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Abstract

The incorporation of conveyor systems throughout industry has seen an increase in demand
for systems that exceed the specification of conventional conveyors. This coupled with the
demand to convey bulk materials over larger distances, at higher speeds and efficiencies,

requires the development of a versatile design approach.

This thesis explores the design aspects associated with modern pouch conveying systems, and
how they vary, and can be adapted from theories used with conventional troughed conveyors.
In particular, the indentation rolling resistance (IRR) is explored in detail, as this can account
for up to 60% of the drag forces of a system. This is the drag force that arises due to an
asymmetric pressure distribution as the idler roll shell indents the bottom cover of the belt.
The potential idler roll arrangements for a generic pouch conveying system are analysed, and

compared with experimental values.

In addition to this, the drive traction attainable from suitable drive stations is analysed.
Troughed conveyors typically wrap the conveyor belt around a large drive pulley, generating
large amounts of traction. Given the layout of pouch conveying systems, a different approach
is required, at multiple locations. As such, pouch conveyors are typically driven through simply
supported drive stations, with small areas of contact with the belt. The useable traction from

these point contact drives is considered.

These theories are then united and applied to a dynamic package capable of handling multiple
conveyor designs. This package utilises Finite Element Modelling (FEM) to model the
viscoelastic nature of the system, based on the distributed drag forces, and inputs of the
conveyor. Lastly, to qualify this theory, experimental analysis is conducted on an on-site

installation, and compared with the theoretical results.
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Nomenclature

B
Ep
Eerr
FIRR
Fy
Frimdrag
Fskew
Fspecial
Farag
Farive

Fflex

Leading edge of the idler-belt contact region

Carry side idler roll spacing

Return side idler roll spacing

Array used to define the behaviour of the nodal elements
Cross sectional area of the belt

Trailing edge of the idler-belt contact region

Belt width

Array used to define the boundary conditions of each state
Half-width of the idler-belt contact region

Speed of sound in a conveyor belt

Lip seal diameter

Mean diameter

Elastic Modulus

Storage Modulus

Loss Modulus

Elastic modulus of a conveyor belt

Effective elastic modulus

Drag force due to indentation rolling resistance

Normal Force

Drag force due to bearing resistances

Drag force due to belt skew

Drag force due to special resistances within the system
Total drag force

Drive force produced by motors

Drag force due to belt and bulk solid flexure

Force due to gravity

Belt tension corresponding to node i

Drag force due to the lip seal

Shear force between the upper and suspended pouch

sections
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T OS> Q

Shear modulus

Bottom cover thickness

Damping Coefficient

Identity matrix

Moment of inertia of the counterweight pulley
Spring constant

Foundation Modulus

Static sag ratio

Height of the pouch from the lower contact of the drive
wheel to the centre of gravity of the suspended mass
Idler roll spacing

Additional length due to sag

Effective length of each finite element

Width of the labyrinth seal

Reduced mass

Nodal mass

Nodal mass of a carry side element

Nodal mass of the upper pouch element surrounding the
drive system

Nodal mass of the suspended pouch element surrounding
the drive system

Nodal mass of a return side element

Mass of the counterweight

Drag moment resulting from the labyrinth seal

Mass of the counterweight pulley

Speed of rotation

Number of nodes

Number of Elements

Pressure

Normal load

Number of Parameters

Uniformly distributed load

Pa

Ns/m

kgm

N/m
Pa

kg

kg
kg
Nm
kg

rpm
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Varive

Wa

Belt mass per unit length

Traction generated within the slip region of contact
Traction generated within the stick region of contact
Tractive force

Conveyor throughput

Radius of the counterweight pulley

Primary radius of an idler roll shell

Cross radius of an idler roll shell

Radius of belt curvature

Shear distribution

Thickness of the belt section

Temperature

Tension

Tight side tension adjacent to the drive system
Slack side tension adjacent to the drive system
Drive Torque

Velocity

Velocity of the drive

Indentation of a rigid idler roll into a belt

Drive wheel width in contact with the belt
Displacement

Displacement of the counterweight
Displacement of the belt corresponding to node i
State vector

Indentation profile

Peak indentation

Reflection coefficient
Transmission coefficient
Shear strain

Peak belt sag

Strain

Pa

°C

3 3 3 38 3

3

3
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Ug

Uk

Strain rate

Total axial strain

Apparent axial strain

Strain due to belt sag

Damping Coefficient

Angle of wrap

Rotation of the counterweight pulley
Coefficient of Friction

Effective coefficient of friction
Poisson’s ratio

Density

The ratio between the leading and trailing edge lengths
within the contact region

Stress

Stress rate

Shear force

The wave period of the individual Maxwell elements
Dynamic viscosity

Kinematic viscosity

Angular frequency

Angular velocity

Pa

Pajq
Pa

Pas
Pas

rad /s
rad /s
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